Conditionally Gaussian Random Sequences for Robust Integrated Variance Estimation

نویسندگان

  • Stefano Peluso
  • Antonietta Mira
چکیده

Conditionally Gaussian random sequences generalize State Space models along two relevant directions: (a) the parameters of the model depend in an arbitrary way from past observations, but once this dependence is realized, the randomness can be expressed in terms of Gaussian random variables, (b) correlation is introduced between the transition and measurement equations, through the presence of a common Brownian motion. Adopting a Bayesian perspective, we propose a general methodology for sampling, a posteriori, the latent stochastic process of a conditionally Gaussian random sequence. The motivating problem is to provide a high-frequency realized variance estimator of the integrated variance that is robust to the presence of correlation between microstructure noise and latent logarithmic returns. The developed algorithm is applied to this financial problem and for modelling noisy normal inverse Gaussian financial returns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Gaussian Markov Random Fields with Applications in Human Brain Mapping

Functional magnetic resonance imaging (fMRI) has become the standard technology in human brain mapping. Analyses of the massive spatio–temporal fMRI data sets often focus on parametric or nonparametric modeling of the temporal component, while spatial smoothing is based on Gaussian kernels or random fields. A weakness of Gaussian spatial smoothing is underestimation of activation peaks or blurr...

متن کامل

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Quantum Rotatability

In [11], Köstler and Speicher showed that de Finetti’s theorem on exchangeable sequences has a free analogue if one replaces exchangeability by the stronger condition of invariance of the joint distribution under quantum permutations. In this paper we study sequences of noncommutative random variables whose joint distribution is invariant under quantum orthogonal transformations. We prove a fre...

متن کامل

A Robust Distributed Estimation Algorithm under Alpha-Stable Noise Condition

Robust adaptive estimation of unknown parameter has been an important issue in recent years for reliable operation in the distributed networks. The conventional adaptive estimation algorithms that rely on mean square error (MSE) criterion exhibit good performance in the presence of Gaussian noise, but their performance drastically decreases under impulsive noise. In this paper, we propose a rob...

متن کامل

On the Consistent Separation of Scale and Variance for Gaussian Random Fields by Ethan Anderes

We present fixed domain asymptotic results that establish consistent estimates of the variance and scale parameters for a Gaussian random field with a geometric anisotropic Matérn autocovariance in dimension d > 4. When d < 4 this is impossible due to the mutual absolute continuity of Matérn Gaussian random fields with different scale and variance (see Zhang [J. Amer. Statist. Assoc. 99 (2004) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014